Типы мышечных волокон

Красные и белые мышечные волокна

Красные мышечные волокна

Красные мышечные волокна

Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна

Белые мышечные волокна

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:

  1. Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
  2. Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.

Все о работе белых волокон

Итак, про красные волокна мы узнали практически все. Теперь попробуем разобраться, как же работают белые волокна. Белые волокна содержат небольшое количество миоглобина и капилляров. Поэтому они выглядят значительно светлее. Для наглядности, вспомните курицу. Ее грудка выглядит белой, а мясо на ногах красным.

Белые волокна сокращаются по сравнению с красными в два раза быстрее. Удивительно и то, что они и силу развивают в 10 раз больше, чем мышцы с красными волокнами. Но у них есть существенный недостаток. Имея такие прекрасные характеристики, белые волокна быстро устают.

Усталость в них накапливается из-за того, что они используют совершенно другой принцип получения энергии. Кроме того, как вы уже знаете, белые волокна имеют два подтипа волокон, хотя по цвету их трудно различить.

— Виды мышечных волокон: Первый подтип — 2В , который использует для получения энергии — анаэробный гликолиз, процесс без участия кислорода. Данные волокна работают как маленькие аккумуляторы. Так как после физической нагрузки, когда вся энергия истратилась (ее хватает не более чем на 2 минуты), происходит ее возобновление (заряд), но данное восстановление протекает лишь во время отдыха, на протяжении 1-2 минут.

Однако, в результате, анаэробного гликолиза — накапливается молочная кислота (продукт распада), а это значит, что мышечная среда становится кислотной, и волокна начинают «гореть», прекращая свою работу. Поэтому после их восстановления (отдыха 1-2 минуты) они снова готовы выполнять свою функцию, так как восполнили энергетические запасы и, частично, избавились от продуктов распада, благодаря кровотоку.

Источником энергии у белых волокон служит гликоген (вырабатывается при расщеплении и переработки глюкозы) и креатин фосфат (организм его получает из белковой пищи: мясо, рыба, яйца, творог и спортивные добавки). В результате физических действий — гликоген, расщепляясь, дает глюкозу, а глюкоза энергию (АТФ) и молочную кислоту. Что касается креатин фосфата, то он восстанавливает запасы АТФ обратно в мышечных волокнах, то есть получается такой круговорот…

Типы мышечных волокно: Второй подтип — 2А , который может до определенного состояния работать без кислорода (анаэробный гликолиз), а затем переключиться и еще какое-то время выполнять работу, но уже используя кислород (аэробный гликолиз) и наоборот. Назначение этих волокон, как вы уже поняли, заключается в том, что они переходят от красных к белым волокнам и от белых к красным, все зависит от выполняемой нагрузки.

Упрощенно можно представить работу подтипа 2А примерно так:

  1. Вначале начинают выполнять работу красные (медленные) волокна, используя аэробный гликолиз.
  2. Когда нагрузка превышает 25% от максимальной, тогда в работу уже вступают в белые промежуточные волокна (2А).
  3. Но если нагрузка растет еще больше, то промежуточные волокна (2А) — передают эстафету уже волокнам подтипа 2В.

Здесь я представил работу мышечной системы несколько упрощенно… На самом деле все обстоит гораздо сложнее. И представлять, что медленные и равномерные движения будут выполняться только за счет медленных волокон, а скоростные движения за счет быстрых, не совсем правильно. Например, включить в работу быстрые мышечные волокна можно, лишь усложнив технику упражнения, поэтому работа тех или иных мышечных волокон будет зависеть от приложенной силы, скорости и техники.

Система настолько хорошо отлажена, что человек даже не подозревает, какие мышцы у него задействованы в данный момент. Например, во время силового упражнения, как правило, все типы волокон, начинают сокращаться примерно одновременно. Но чтобы полностью выполнить сокращение, медленным красным волокнам понадобится, от 90 до 140 мл/сек. В то же время быстрые волокна успеют полностью сократиться всего за время, от 40 до 90 мл/сек.

Быстрые гликолитические волокна мышечной ткани

Первый тип – быстрые гликолитические волокна. Процесс гликолиза используется ими для получения энергии. Другими словами, они способны применять только анаэробную систему энергообразования, способствующую образованию молочной кислоты (лактата). Соответственно, данные волокна не производят энергию с участием кислорода, то есть аэробным путем. Быстрые гликолитические волокна характеризуются максимальной скоростью сокращений и силой. Они играют главную роль при наборе массы у спортсменов-бодибилдеров, а также обеспечивают бегунам и пловцам, выступающим на спринтерских дистанциях, максимальную скорость.

Условия для роста мышц

Итак, что нужно, чтобы росли мышцы?

  • ТРЕНИРОВОЧНЫЙ СТРЕСС (разрушение)! Он нужен для того, чтобы способствовать выработке АНАБОЛИЧЕСКИХ ГОРМОНОВ! Только тогда тело включит процесс роста (анаболизма).
  • ГОРМОНАЛЬНЫЙ ФОН! Нам нужны ГОРМОНЫ, которые копируют информацию о синтезе белка из ДНК клетки. Именно благодаря им метаболизм (обмен веществ) сдвигается в сторону роста (анаболизма). Разрушение белковых структур на тренировке заставляет организм восстанавливать разрушения. Это залечивание, как раз, и называется СИНТЕЗ БЕЛКА.
  • ИОНЫ ВОДОРОДА! О них мы сегодня уже достаточно много говорили. Они РАСКРУЧИВАЮТ СПИРАЛЬ ДНК для того, чтобы информация о синтезе белка стала доступна для считывания гормонами (стероидно-рецепторными комплексами). Если не будет достаточного количества ионов водорода, которые выделяются в ответ на расход АТФ, то у гормонов не будет возможности считать информацию о синтезе белка и запустить рост. ЗАПОМНИТЕ: ГОРМОНЫ (стероиды) без тренировочного стресса НЕ ДАДУТ РЕЗУЛЬТАТА, а ТРЕНИРОВКА БЕЗ ГОРМОНОВ ДАСТ!
  • КРЕАТИНФОСФАТ! Даёт энергию молекуле ДНК для ей быстрой работы. Так же добавка КРЕАТИН МОНОГИДРАТ может способствовать выполнению дополнительных пары повторений на тренировке. Хорошая вещь.
  • АМИНОКИСЛОТЫ для роста! Для того, чтобы вырастить мышцы, нужно чтобы было из чего растить! Аминокислоты – это пластический строительный материал для роста мышц.

Да белок (аминокислоты) очень важен! Но больше в условиях ДИЕТЫ (дефицита простых углеводов). Представьте, когда вы худеете, т.е. не едите углеводы и тренируетесь, то гликогена в ваших мышцах ОЧЕНЬ МАЛО, а значит приходится использовать в качестве энергии аминокислоты (дорогой источник питания). Если вы будете дополнительно пить на тренировке и после аминокислоты, то вы сохраните больше мышц.

Это не выгодно производителям спортивного питания, т.к. БЕЛОК ДОРОЖЕ и с его продажи можно получить БОЛЬШЕ! Но я считаю, что это так. УГЛЕВОДЫ ВАЖНЕЕ, чем белок, особенно в условиях набора мышечной массы, т.к. дают энергию вашим мышцам.

Дело в том, что после тренировки ваше тело ДАЖЕ НЕ ДУМАЕТ о том, чтобы растить мышцы, т.к. оно истощило запасы энергии! Ему надо их восполнить! Именно поэтому следующие два дня после тренировки ваше тело восполняет запасы энергии и даже не думает о росте. А сократительные белки продолжают разрушаться за счёт ферментов – ПРОТЕИНКИНАЗ! Только спустя 2 дня тело запускает восстановление и, как обычно пишут, восстанавливается за 7 дней. Но на самом деле, даже больше. Обычно за 10-14 дней.

Это касается ЛЮБЫХ мышечных волокон (ММВ, БМВ, ВБМВ). Единственная разница в том, что для ММВ сложнее удержать нужную концентрацию ионов водорода, поэтому необходимо выполнять упражнения определённым образом, о чём мы говорили выше в этой статье.

Быстро сокращающиеся мышечные волокна ( II-тип)

1. Быстро сокращающиеся волокна делятся на 2 группы:

  •  быстро сокращающиеся IIa — быстрые оксидативные (используют кислород, чтобы преобразовать гликоген в АТФ);
  •  быстро сокращающиеся IIb — быстрые гликолитические (используют АТФ, который хранится в мышечных клетках в виде гликогена, чтобы вырабатывать энергию).

2. Быстро сокращающиеся волокна имеют высокий порог активации, поэтому включаются в работу только тогда, когда потребность в силе будет больше, чем могут обеспечить медленно сокращающиеся волокна.

3. Быстрым волокнам требуется меньше времени, чтобы достичь пиковой силы. К том же они могут генерировать больше силы, чем медленные волокна.

4. Хотя они генерируют больше силы, но и быстрее устают.

5. Мышцы, отвечающие за создание движения, в большей степени состоят из быстрых волокон.

6. Тренировка для силы и прочности увеличивает количество быстро сокращающихся мышечных волокон, задействованных в конкретном движении.

7. Быстро сокращающиеся волокна отвечают за размер и выразительность мышц.

8. Быстрый тип волокон называется «белыми волокнами», так как плохо снабжается кровью и не имеет такого насыщенного цвета, как второй тип.

Как видно из вышеперечисленного, характеристики быстро сокращающихся волокон требуют тренировок на силу и прочность, а также на развитие взрывной силы. Если вы хотите по максимуму использовать быстрые волокна в своих тренировках для повышения силы и прочности, вот несколько конкретных методов, которые в этом помогут.

Методы тренировки для быстро сокращающихся волокон:

— Тренировки с тяжелым весом заставляют мышцы активировать больше мышечных волокон. Чем тяжелее вес, тем больше быстро сокращающихся волокон будет вовлечено в работу.

— Выполнение взрывных движений, а также упражнений на прочность с использованием штанги, гирь или гантель, обеспечит работу большего количества мышечных волокон.

— Быстро сокращающиеся волокна быстро устают. Поэтому надо сосредоточиться на использовании тяжелого веса, но только до определенного числа повторений (например, от двух до шести), чтобы достигнуть максимального эффекта.

— Поскольку быстрые волокна быстро истощают энергию, во время тренировок требуются более длительные периоды отдыха, чтобы мышцы-двигатели имели достаточно времени восстановиться и пополнить запасы АТФ. Поэтому после каждого взрывного или силового упражнения стоит делать паузы продолжительностью в 60-90 секунд.

Генетика определяет количество каждого из типов мышечных волокон в нашем теле. Тем не менее, понимание того, какой именно, быстро- или медленно сокращающийся, тип является доминирующим, поможет выстроить правильную программу тренировок. Поэтому, если обнаружите, что, как правило, придерживаетесь тренировок на выносливость, и они относительно легко вам поддаются, вы, вероятно, являетесь обладателем большого количества медленно сокращающихся волокон. И наоборот, если предпочитаете физическую нагрузку, которая предусматривает короткие взрывные движения или тренировки с большим весом, — в вашем теле доминирует быстро сокращающийся тип волокон. 

Программа упражнений, которая применяет правильные стратегии тренировок для ваших мышечных волокон, поможет максимизировать эффективность нагрузок.опубликовано econet.ru

Таблица характеристик типов мышечных волокон

Характеристики

Медленно сокращающиеся

Быстро сокращающиеся IIa

Быстро сокращающиеся IIb

Генерирование силы

Низкий уровень

Средний уровень

Высокий уровень

Скорость сокращения

Низкий уровень

Высокий уровень

Высокий уровень

Уставаемость

Низкий уровень

Средний уровень

Высокий уровень

Гликолитическая способность

Низкий уровень

Высокий уровень

Высокий уровень

Оксидативная способность

Высокий уровень

Средний уровень

Низкий уровень

Снабжаемость кровью

Высокий уровень

Средний уровень

Низкий уровень

Митохондриальная плотность

Высокий уровень

Средний уровень

Низкий уровень

Выносливость

Высокий уровень

Средний уровень

Низкий уровень

Присоединяйтесь к нам в  , , Одноклассниках

Практическая схема для гипертрофии ММВ

Что нам нужно для максимальной гипертрофии (“раздутия” мышечных клеток):

Давайте рассмотрим это на примере подъёма штанги на бицепс стоя.

К примеру, ваш рабочий вес 30 кг на 10-12 раз, а 40 кг вы подняли на 1 раз (40 кг – ваш 1 ПМ). ПМ – это повторный максимум!

Как действовать?

  • Сначала подбираем вес, исходя из нашего 1ПМ. Берём от него 30-50%, т.е. от 40 кг, это будет 12-20 кг.
  • Теперь согнув локти в локтях, мы запоминаем наше исходное положение. РУКИ НЕ ДОЛЖНЫ РАЗГИБАТЬСЯ ПОЛНОСТЬЮ во время подхода, чтобы не пропускать кровь. Работаем ВНУТРИ амплитуды! Т.е. не доходим до верхней и нижней точек. Как только чувствуем, что мышца может расслабиться, останавливаемся и двигаемся в противоположную сторону.
  • Поднимаем и опускаем штангу ОЧЕНЬ МЕДЛЕННО! На счёт 1-2 вверх и на 3-4 вниз! Если возможно, то ещё медленнее! Так мы задействуем наши ММВ и выключаем из работы БМВ.
  • ДОСТИГАЕМ НЕВЫНОСИМОГО ЖЖЕНИЯ! Это очень важный момент. Оно должно быть настолько сильным, что поднять этот самый лёгкий вес ещё раз, просто не представляется возможным. Мы достигаем мышечного отказа. Это будет говорить о предельном закислении мышцы, т.е. о высоком содержании ИОНОВ ВОДОРОДА. Повторений будет больше, чем обычно, а именно 20-30 и подход будет длиться 30-50 секунд. Это нормально!

Так будет выглядеть один подход. Сколько подходов должно быть? По идее, ОЧЕНЬ МНОГО, но мы, как вы знаете, ограничены во времени, поэтому давайте искать решение.

Чтобы снизить жжение нам нужно около 5 минут, а чтобы оно пропало полностью нужно 40-60 минут.

Поэтому, если исходить из вышесказанного, то оптимальным бы было выполнение таких подходов каждый час в течение всего дня. Но это мало кому будет удобно.

Я предпочитаю использовать СТУПЕНЧЧАТЫЙ МЕТОД ЗАКИСЛЕНИЯ мышцы. Т.е. вы выполняете 3-4 подхода с МИНИМАЛЬНЫМ ОТДЫХОМ, потом отдыхаете 3-4 минуты и опять повторяете 3-4 подхода, потому опять отдых 3-4 минуты и опять серия.

Пример: вы выполнили подход на бицепс за 30 секунд. Отдохните 20-30 секунд и повторите второй подход, теперь опять отдохните 20-30 секунд и выполните третий подход. Теперь отдохните 3-4, а можно и 5 минут. И повторите серию из 3 подходов с перерывом в 20-30 секунд. Таких «серий» можно делать от 2 до 5 в рамках одной тренировки.

ПОДХОД (30-50 сек) + ОТДЫХ (20-30 сек) + ПОДХОД (30-50 сек) + ОТДЫХ (20-30 сек) + ПОДХОД (30-50 сек) + ОТДЫХ (3-5 минут!) … ПОВТОР СЕРИИ…

Кстати, это удобно тем, что многие упражнения можно выполнять дома (отжимания, жим гантелей на наклонной скамье, бицепс, трицепс, дельты).

Влияние тестостерона

В некоторых экспериментах на животных после применения андрогенных анаболических стероидов наблюдали изменение соотношения изоформ тяжелых цепей миозина в сторону увеличения медленных изоформ (Fritzshe et al., 1994; Czesla ct al., 1997). Сообщалось об увеличении доли волокон, содержащих MyHCIIA, наряду с сокращением количества волокон, содержащих МуНСПВ, в ряде скелетных мышц грызунов после применения андрогенных анаболических стероидов (Eggington, 1987; Dimauro et al., 1992). Однако сообщалось также о том, что андрогенные стероиды вызывают уменьшение доли мышечных волокон, содержащих MyHCIIA, по отношению к волокнам, состоящим из МуНСПВ (Kelly et al., 1985; Lyons et al., 1986; Salmons, 1992). Эти результаты говорят о том, что характер воздействия андрогенных анаболических стероидов на сократительные способности может зависеть от типа мышц и у различных видов может быть разным. Действительно, существуют и другие данные, свидетельствующие об отсутствии какого-либо воздействия андрогенных анаболических стероидов по соотношение мышечных волокон, содержащих различные изоформы МуНС. Например, в экспериментах на животных чрезмерная нагрузка мышц вызывала увеличение содержания медленных MyHCI, и дополнительное использование андрогенных анаболических стероидов не влияло на характер содержания тяжелых цепей миозина (Boissonneault et al., 1987). Точно так прием андрогенных анаболических стероидон не вызывал изменений сдвига соотношения изоформ МуНС, вызванного экспериментами с обездвиживанием нижней конечности (Tsika et al., 1987). Наконец, не удалось обнаружить никаких различий в соотношении разных изоформ МуНС в трапециевидной мышце хорошо тренированных тяжелоатлетов, принимавших и не принимавших андрогенные анаболические стероиды (Kadi et al., 1999b).

Инструкция по определению своего повторного максимума

Прежде всего, выберите упражнение, которое у Вас получается очень хорошо. Его Вам делать приятно и техника даётся легко. Для начинающих в целях тестирования подходят следующие упражнения:

В идеале это должно быть простое односуставное упражнение. В тренажёрном зале можно выполнить:

и некоторые другие упражнения.

Итак, решите, какое именно упражнение Вы будете использовать и начните определение повторного максимума.

Тест стоит проводить в отдельный от тренировок день. Хорошенько разомнитесь и выставьте на снаряде вес, который Вы можете одолеть не менее 8 раз. Сделайте с ним подход из 6 повторений.

Затем увеличьте вес примерно на 10%, отдохните 2-3 минуты, и снова проделайте подход в данном упражнении, сделав 3-4 повторения.

Далее вновь увеличьте вес на 5-10%, отдохните 3 минуты и снова сделайте несколько повторений (3-2), не доводя усилия до отказа.

Таким образом, продолжайте эту процедуру до тех пор, пока не достигнете такого веса, который будет Вам по силам лишь в одном технически точном повторении. Убедитесь, что вес, увеличенный на 1-2% Вам уже не по силам.

Если Вы используете упражнение жим штанги лёжа на наклонной или на горизонтальной скамье, обязательно позовите на помощь партнёра, который будет следить за Вами и «спасёт» Вас, если не справитесь.

Прекратите выполнение теста, если почувствуете малейшие признаки травмы или перенапряжения: боль в мышцах или в суставах, неудобство траектории упражнения, потемнение в глазах.

Затратив примерно 15 минут Вы узнаете, на что способны в данном упражнении.

Типы мышечных волокон

  • Автор admin
  • 27 Декабрь, 2012

Структура мышечных тканей.

Перемещение тела в пространстве, осуществление деятельности внутренних органов (сердце, пищеварительный тракт и т.д.), сохранение и фиксация определенной позы – далеко не весь спектр функциональных возможностей мышечных тканей человека. В свою очередь, они делятся на типы (поперечнополосатые и гладкие), каждый из которых имеет свою неповторимую клеточную структуру и организацию.

 Типы мышечных волокон. На данный момент их выделяется 4:

1)  Медленные фазические волокна окислительного типа (МС). Насыщены белком миоглобином, прекрасно связывают кислород. Мышцы, состоящие из такого типа волокон, имеют темно-красный цвет. Их основная задача: фиксация определенного положения тела. Примечательно, что предельное утомление данных волокон достигается крайне медленно, а восстановление, наоборот, быстро.

2)  Быстрые фазические волокна окислительного типа (БСб). Основная функция мышц, состоящих из данных волокон, — быстрые сокращения. Характеризуются также довольно низким уровнем утомляемости. Ученые объясняют это повышенным содержанием в них митохондрий.

3)  Быстрые фазические волокна с гликолитическим типом окисления (БСа). В данном случае АТФ синтезируется за счет процесса гликолиза.  В волокнах этого типа митохондрий содержится значительно меньше, чем в предыдущей категории.  Такие мышцы способны быстро и интенсивно сокращаться, но при этом утомление достигается значительно быстрее. Белок миоглобин здесь отсутствует, что объясняет белый цвет мышц.

4)  Тонические волокна. Отличаются низким уровнем быстродействия и неспособностью к интенсивным фазическим сокращениям. Причиной этому служит малый коэффициент обмена миозиновой АТФ-фазы. Расслабление мышц, состоящих из данных волокон, занимает длительный промежуток времени.

Примечательно, что мышцы, участвующие в интенсивных и быстрых движениях, состоят из небольшого числа волокон, а в мышцах с другим спектром «возможностей» (фиксация и сохранение определенного положения тела в пространстве), наоборот, двигательных единиц насчитывается до нескольких тысяч.

В целом, МС-волокна в организме человека преобладают (от 52% до 55%). При этом силовой потенциал и выносливость мышечных тканей не зависит от гендерной характеристики.

Число мышечных волокон определенного вида зависит от специфики и размера физической нагрузки на организм. Так, например,  в занятиях бегом, легкой атлетикой, плаванием ( дистанция – 500м) активно задействуются БСб-волокна. Сокращение дистанции до 100-200м вовлечет в тренировочный процесс БСа-волокна.

Ученые утверждают, что пропорциональное соотношение мышечных волокон в организме человека предопределено генетически. При этом только систематические занятия спортом способны повлиять на биохимический состав и физиологические свойства мышечных тканей. К примеру, при обилии анаэробных тренировок для повышения выносливости происходят следующие изменения: БСб- волокна по свойствам становятся схожи с БСа-волокнами, а те в свою очередь, «роднятся» с МС-волокнами.

В случае, если необходимо повысить скоростно-силовые характеристики спортсмена, тренировочный процесс приводит к следующим изменениям: МС-волокна приобретают характеристики БСа-волокон, а те, соответственно, свойства БСб-волокон.

Помните, при построении тренировочного процесса необходимо учитывать в том числе и такой показатель, как структура мышечных тканей. Поэтому желательно проводить консультацию со специалистом. Только он после серии специальных тестов и анализов сможет выстроить правильную стратегию по усовершенствованию ваших физиологических характеристик. Будьте здоровы!

Хотите знать больше?

Назначение мышечных волокон

Естественно возникает вопрос, а в чем еще есть разница между мышечными волокнами белого и красного цвета? Во время проведения многочисленных опытов было замечено, что красные волокна сокращаются медленнее, а белые быстрее. Поэтому мышцы, состоящие из красных волокон стали называть медленными, а состоящие из белых волокон быстрыми мышцами. Теперь понемногу начинает проясняться картина, но зачем все это нужно нашему телу?

Наверное, природе не удалось изобрести универсальную мышцу, и она решила сделать два основных типа мышц, но с узкой направленностью действия: быстрые (белые) мышечные волокна и медленные (красные) мышечные волокна.

Типы мышечных волокон: Быстрые (белые) мышечные волокна.

В тех случаях, когда требуется выполнить большую работу и очень быстро — в дело включаются мышцы с белыми волокнами . Потому что они могут быстро сокращаться и давать огромную взрывную силу и мощь, например, профессиональные спринтеры, которые менее чем за 10 секунд пробегают стометровку… Но долго они в таком режиме работать (сокращаться) не могут, так как:

Во-первых – энергетические запасы не вечны и их хватает буквально на пару минут интенсивной работы.

Во — вторых — для восстановления энергетических запасов в мышцах — нужно время (от 2 до 5 минут), чтобы восстановить запасы молекул АТФ (основная энергетическая единица в живом теле) и креатин фосфата (о нем вы узнаете чуть ниже). Теперь вы начинаете понимать, почему тяжелоатлеты отдыхают 1-2 минуты между подходами.

И в-третьих – с каждым повтором (сокращением мышцы), в процессе реакций по выработке энергии – образуются продукты распада (молочная кислота), которая начинает «жечь» мышцы все больше и больше, а в результате от боли и отсутствия сил (энергии) – работа их прекращается.

Энергетическая система быстрых волокон, практически, направлена на анаэробный гликолиз (без кислородный). Почему практически? Да потому что существует два подтипа быстрых волокон: 2А и 2В. 2А – это переходный тип волокон, которые быстро сокращаются, имеют большую силу и используют в качестве энергии как аэробный гликолиз (с участием кислорода: окисление углеводов и жиров), так и анаэробный гликолиз (без участия кислорода). 2В – это уже чистые быстрые волокна, которые ОЧЕНЬ быстро сокращаются, имеют огромную взрывную силу и мощь, а так же для восполнения их энергии требуется анаэробный гликолиз (без кислородный).

Виды мышечных волокон: Медленные (красные) мышечные волокна.

А вот когда необходимо выполнить очень большой объем работы, но не так быстро, на протяжении длительного промежутка времени, то за дело берутся медленные волокна. Потому что они более выносливые, так как используют аэробный гликолиз (с участием кислорода), но не обладают такой силой, мощью и скоростью, как быстрые мышечные волокна. Например, медленные волокна необходимы марафонцам, для которых нужна очень хорошая выносливость.

Однако если раньше все было понятно, то теперь без специальных терминов не обойтись.

Роль синтеза белка при наборе мышечной массы

Каждая клетка в организме человека имеет в своем составе только по 1 ядру, мышцы же – большое количество, что позволяет им синтезировать новые, качественные белки, которые состоят из определенного количества аминокислот. Ядра клеток мышц подают сигнал рибосомам, чтобы они синтезировали необходимый вид белка.

Если вы не будете поставлять мышцам необходимый строительный материал, они, просто не смогут вырасти. И снова, как вы можете видеть, все упирается в питание.

Мышечное напряжение, его влияние на мышцы

Напряжение, создаваемое мышцей во время тренировки, еще один важнейший элемент. Он отвечает за запуск механизма синтеза белка, подавая сигнал клеткам мышц о необходимости питания «пострадавших» волокон.

Благодаря этому-то и происходит появление новых тканей, увеличение массы и объема мышцы. Рецепторы в клетках очень чувствительны к максимальным нагрузкам и большому напряжению. Именно поэтому все профессиональные культуристы советуют заниматься, пока позволяют силы.

Необходимо переступать болевой порог, чтобы запустить процесс синтеза белка и суперкомпенсации.

Роль гормонов в тренировочном процессе

Рост мышц строится на 3 «китах»:

  • Тестостерон
  • Инсулин
  • Гормон роста

Каждый из этих гормонов оказывает сильнейшее влияние на мышечные клетки. Инсулин ускоряет процесс подачи протеина к мышцам. Калий-натриевый насос осуществляет процесс передачи аминокислот в мышечную ткань. Два остальных гормона, наоборот, действуя на волокна мышц, заставляют их распадаться. Весь этот процесс возможен только при мощных нагрузках.

Роль аминокислот

Аминокислота – это частица белка. Из них строится необходимый белок. 1 вид белка содержит несколько видов аминокислот. Ваши результаты по набору массы зависят целиком и полностью от того, сколько вы употребляете белка вместе с пищей.

Читайте про пользу творога для мышц.

Необходимое количество белка определяется уровнем интенсивности тренировочного процесса. Также кроме белка важную роль играют калории, которые поставляют необходимую энергию для занятий сложными физическими упражнениями.

Циклы роста и снижения мышечной массы

В бодибилдинге любой культурист должен помнить о 2-х важных процессах:

  • Анаболический цикл (постоянный рост мышц, если соблюдены все условия тренинга + правильное питание)
  • Катаболический цикл (недостаточное питание, вследствие чего спад мышечного роста и появление утомления)

Необходимые условия для роста мышц

Если вы решили нарастить мышечную массу, то вам необходимо следовать 3-м главным составляющим:

  • Мощные нагрузки и правильно построенный тренировочный процесс.
  • Правильное и режимное питание, которое будет поставлять вашим мышцам все необходимые вещества.
  • Полноценный отдых.

Это важно

Необходимо помнить, что наш организм «смышлёный», он привыкает к определенной нагрузке, которая повторяется продолжительное время. Вам следует «удивлять» его новыми упражнениями, меняющимися нагрузками, продолжительностью тренировок и многими другими уловками.

Для полноценного роста мышц вам оптимально развивать не только быстрые волокна, но и медленные. То есть — иногда чередовать нагрузки (на силу и на массу). От этого зависит пропорциональный рост.

Включение разных типов волокон в зависимости от нагрузки

При легкой нагрузке (ходьба, прогулка на велосипеде, бег трусцой) энергия поставляется за счет аэробной системы — окисление жиров в мышечных волокнах типа I. Запасы жира неисчерпаемы.

При нагрузке средней мощности (бег, езда на велосипеде) в мышечных волокнах типа I помимо окисления жиров растет доля окисления углеводов, хотя энергообеспечение все еще протекает аэробным путем. Хорошо подготовленные спортсмены могут поддерживать максимальную аэробную нагрузку 1-2 часа. За это время происходит полное истощение запаса углеводов.

При повышении интенсивности работы (соревновательный бег на 10 км) включаются мышечные волокна типа IIа и окисление углеводов становится максимальным. Энергообеспечение идет за счет кислородного механизма, но и лактатная система вносит свой вклад. Организм перерабатывает молочную кислоту с той скоростью, с какой ее производит. Если уровень интенсивности и доля участия лактатной системы в энергообеспечении продолжают расти, молочная кислота накапливается и быстро истощаются запасы углеводов. Такая нагрузка может поддерживаться в течение ограниченного периода времени, в зависимости от тренированности спортсмена.

Во время спринтерской тренировки максимальной мощности или при выполнении интервалов с высокой интенсивностью включаются мышечные волокна типа IIb. Энергообеспечение идет полностью анаэробным путем. Источник энергии — исключительно углеводы. Показатели молочной кислоты сильно возрастают. Продолжительность нагрузки не может быть большой.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector