Энергообеспечение организма: способы энергообеспечения

12.5. Изменение метаболизма при мышечной работе

Уменьшение
концентрации АТФ смещает равновесие
креатинфосфокиназной реакции вправо:
используется креатинфосфат. Далее
включается гликолиз, так системе
окислительного фосфорилирования
необходима 1 мин для запуска. Это пусковая
фаза мышечной работы.

  1. Дальше
    изменения метаболизма зависят от
    интенсивности мышечной работы:

    1. если мышечная
      работа длительная и небольшой
      интенсивности, то в дальнейшем клетка
      получает энергию путем окислительного
      фосфорилирования — это работа в «аэробной
      зоне»;

    2. если мышечная
      работа субмаксимальной интенсивности,
      то — дополнительно к окислительному
      фосфорилированию включается гликолиз
      — это наиболее тяжелая мышечная работа
      — возникает «кислородная задолженность»,
      это — работа «в смешанной зоне»;

    3. если мышечная
      работа максимальной интенсивности,
      но непродолжительная, то механизм
      окислительного фосфорилирования не
      успевает включаться. Работа идет
      исключительно за счет гликолиза. После
      окончания максимальной нагрузки лактат
      поступает из крови в печень, где идут
      реакции глюконеогенеза, или лактат
      превращается в пируват, который дальше
      окисляется в митохондриях (ГДФ-путь).
      Для окисления пирувата нужен кислород,
      поэтому после мышечной работы
      максимальной и субмаксимальной
      интенсивности потребление кслорода
      мышечными клетками повышено — возвращается
      кислородная задолженность (долг).

Таким образом,
энергетическое обеспечение разных
видов мышечной работы различно. Поэтому
существует специализация мышц, причем
обеспечение энергией у разных мышечных
клеток принципиально различается: есть
«красные» мышцы и «белые»
мышцы.

Красные мышцы
— «медленные» оксидативные мышцы.
Они имеют хорошее кровоснабжение, много
митохондрий, высокая активность ферментов
окислительного фосфорилирования.
Предназначены для работы в аэробном
режиме. Например, такие мышцы служат
для поддержания тела в определенном
положении (позы, осанка).

Белые мышцы
— «быстрые», гликолитические. В них
много гликогена, у них слабое кровоснабжение,
высока активность ферментов гликолиза,
креатинфосфокиназы, миокиназы. Они
обеспечивают работу максимальной
мощности, но кратковременную.

У человека
нет специализированных мышц, но есть
специализированные волокна:
в мышцах-разгибателях больше «белых»
волокон, в мышцах спины больше «красных»
волокон.

Существует
наследственная предрасположенность к
мышечной работе
— у одних людей больше «быстрых»
мышечных волокон — им рекомендуется
заниматься теми видами спорта, где
мышечная работа максимальной интенсивности,
но кратковременная (тяжелая атлетика,
бег на короткие дистанции и тому
подобное). Люди, в мышцах которых больше
«красных» («медленных») мышечных
волокон, наибольших успехов добиваются
в тех видах спорта, где необходима
длительная мышечная работа средней
интенсивности, например, марафонский
бег (дистанция 40 км). Для определения
пригодности человека к определенному
типу мышечных нагрузок используется
пункционная биопсия мышц.

В результате
скоростных тренировок (bodybuilding) утолщаются
миофибриллы, кровоснабжение возрастает,
но непропорционально увеличению массы
мышечных волокон, количество актина и
миозина возрастает, увеличивается
активность ферментов гликолиза и
креатинфосфокиназы.

Более полезны для
организма тренировки «на выносливость».
При этом мышечная масса не увеличивается,
но увеличивается количество миоглобина,
митохондрий и активность ферментов
ГБФ-пути.

Системы энергообеспечения физической нагрузки

Большинство людей или, по крайней мере, многие могут объяснить, как мотор в их автомашине приходит в действие. Они знают, что для того чтобы сжигать топливо, мотору необходим кислород. Они знают, что по мере того как скорость машины растет, двигателю требуется больше топлива и больше кислорода. Они также знают, что если они не обеспечат машину топливом и кислородом, то она просто не поедет.

Подобным же образом в организм человека должна постоянно поступать энергия для выполнения множества сложных задач. Во время физической нагрузки вашему организму требуется больше энергии. Необходимо любым способом предоставить эту дополнительную энергию, иначе вы непременно остановитесь. Существует две взаимосвязанных системы энергообеспечения организма: одна из них функционирует в присутствии кислорода, другая — без кислорода. Это, соответственно, аэробная и анаэробная системы.

Лактатная система ресинтеза АТФ

Прсле определенного уровня интенсивности работы организм переходит на бескислородное (анаэробное) энергообеспечение, где источник энергии — исключительно углеводы. Интенсивность мышечной работы резко снижается из-за накопления молочной кислоты (лактата).

Ресинтез АТФ идет за счет лактатного механизма:

  • несколько минут в начале любого упражнения пока легкие, сердце и системы транспорта кислорода не приспособятся к потребностям нагрузки;
  • при беге на 100, 200, 400 и 800 м, а также во время любой другой интенсивной работы, длящейся 2-3 мин;
  • в беге на 1500 м вклад аэробного и анаэробного энергообеспечения — 50/50;
  • при кратковременном увеличении интенсивности работы — при рывках, преодолении подъемов, во время финишного броска, например, на финише марафона или велогонки.

Лактат может быть в 20 раз выше нормы. Максимальная концентрация молочной кислоты достигается в беге на 400 м. С увеличением дистанции концентрация лактата снижается (График 2).

Отрицательные эффекты высокого лактата

  • Мышечная усталость. Если начать длительный бег в высоком темпе или рано приступить к финишному рывку, мышечная усталость, вслед за ростом концентрации лактата, не даст спортсмену выиграть гонку.
  • Ацидоз (закисление) мышечных клеток и межклеточного пространства. Может потребоваться несколько дней, чтобы ферменты снова нормально функционировали и аэробные возможности полностью восстановились. Частое повторение интенсивных нагрузок (без достаточного восстановления) приводит к перетренированности.
  • Повреждение мышечных клеток. После напряженной тренировки в крови повышается уровень мочевины, креатинкиназы, аспартатаминотрансферазы (АсАТ) и аланинаминотрансферазы (АлАТ). Это указывает на повреждение клеток. Чтобы показатели крови снова пришли в норму требуется от 24 до 96 ч. В это время тренировки должны быть легкими — восстановительными.
  • Нарушение мышечного сокращения влияет на координацию. Тренировки на технику не следует проводить если лактат выше 6-8 ммоль/л.
  • Микроразрывы. Незначительные повреждения мышц могут стать причиной травмы при недостаточном восстановление.
  • Замедляется образование КрФ. Лучше не допускать высоких показателей лактата во время спринтерских тренировок.
  • Снижается утилизация жира. При истощение запасов гликогена энергообеспечение окажется под угрозой, поскольку организм будет не способен использовать жир.

На нейтрализацию половины накопившейся молочной кислоты требуется около 25 минут; за 1 час 15 минут нейтрализуется 95% молочной кислоты. Активное восстановление («заминка») очень быстро снижает лактат. В восстановительной фазе лучше выполнять непрерывную, а не интервальную работу (График 3).

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O     ⇒     АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

Выглядит это так:

АДФ+ КрФ   ⇒   АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек.  Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить  путем тренировок  до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Креатинфосфат

Скажем, бегун рванул со старта стометровки. Это какие-то секунды работы. Но чтобы обеспечить эти секунды мощной работы, необходимо восстановление (или, как говорят, ресинтез АТФ). Причем этот  ресинтез, это энергообеспечение мышечной деятельности происходит при отсутствии кислорода (в т.н. анаэробном режиме) – ведь «транспортная система» просто-напросто не успела еще доставить его к работающим мышцам. За счет чего он происходит?

Оказывается, за счет специального энергетического вещества креатинфосфата, химическая формула которого приведена ниже. Беда в одном – его очень мало, хватает на 10 – 15 секунд мощной мышечной деятельности. Собственно, здесь и ответ на вопрос, почему нельзя в спринтерском темпе пробежать, скажем, два километра.

Креатинфосфата — вещество, за счет которого происходит синтез АТФ

Повторим, эта работа – тоже очень высокой интенсивности – происходит в так называемом анаэробном режиме, когда тот самый ресинтез АТФ идет при условии острого дефицита кислорода.

Энергоносители

Мышечными энергоносителями являются

  1. фосфатные соединения: аденозинтрифосфат (АТФ) и креатинфосфат (КФ)
  2. углеводы: глюкоза и гликоген
  3. жиры в виде жирных кислот

белки в виде аминокислот

Где в организме хранятся энергоносители?

Запасы аденозинтрифосфата (АТФ), креатинфосфата (КФ), гликогена и жиров накапливаются непосредственно в самой мышечной клетке. Кроме того, гликоген и жиры откладываются также в печени и в подкожной жировой клетчатке.

Запасы АТФ и КФ в мышцах настолько малы и ничтожны, и, в лучшем случае составляют всего несколько килокалорий. Таких запасов хватит всего-навсего на несколько секунд интенсивной работы.

Другое дело гликоген и жиры. Энергетические резервы, хранящиеся в организме в виде гликогена составляют у тренированного человека до 750 грамм (3100 ккал), в то время как у нетренированного – более чем на треть меньше – 450 грамм (1800 ккал). Большая часть гликогена запасается в мышцах и представляет из себя энергорезерв быстро включающийся в энергообразование (так как мышечный гликоген не надо транспортировать к мышечной клетке с помощью кровотока, а затем проводить через оболочку клетки – ведь он уже итак в ней припасен). Интересен следующий факт: мышечные волокна легко и с удовольствием принимают приносимую кровотоком глюкозу, и накапливают ее в виде гликогена, но очень неохотно отдают его для потребления другими интенсивно работающими мышцами.

Запасы гликогена в печени составляют около 150 грамм (620 ккал). Гликоген печени только частично может быть использован для обеспечения работы мышц. Дело в том, что нужно еще обеспечивать работу мозга и нервной системы, которым тоже нужно питание. Поэтому всевозможные защитные механизмы препятствуют чрезмерному потреблению «печеночного» гликогена мышцами и поддерживают постоянный уровень сахара в крови (80-90 мг глюкозы на 100 мл крови).

Итак, истратив свой гликоген, и позаимствовав немного гликогена у печени, наши интенсивно работающие на тренировке мышцы все еще нуждаются в источнике энергии. Тут дело доходит и до жиров.

Запасы жиров в организме огромны: от 30000 до 100000 ккал и сосредоточены они в подкожной жировой клетчатке (особенно на животе, и на бедрах у дам). Запасы жира в мышцах (в виде капель триглицерида) не велики – около 200 грамм (1900 ккал). Жиры хороши для продолжительной мышечной работы небольшой интенсивности.

Химические реакции

Непосредственным источником энергии для мышечных волокон всегда является АТФ

Как происходит процесс?

Чтобы получить энергию аденозинтрифосфат (АТФ) расщепляется на аденозиндифосфат (АДФ) и фосфат (Ф). При этом выделяется энергия, которая и используется для сокращения мышечных волокон:


Запасы АТФ в мышцах крайне малы, поэтому тут же запускаются механизмы обратного синтеза АТФ:


Эта обратная реакция называется фосфорилированием. Для осуществления этой реакции, как мы видим, нужна энергия. Где же ее взять?

Вот тут и потребуются рассмотренные ранее вещества-энергоносители, при расщеплении которых мы получим необходимую для синтеза АТФ энергию. Если в получении этой энергии участвует кислород, то такое энергообразование называется аэробным, если образование энергии проходит без участия кислорода, то это анаэробное энергообразование. С помощью каких энергоносителей будет осуществляться восстановление АТФ, зависит от количества энергии требуемой в единицу времени.

Анаэробное энергообразование

Анаэробное энергообразование

Анаэробное алактатное энергообразование

Анаэробное алактатное (фосфатное) энергообразование

Химические реакции, проходящие с участием КФ и АТФ, способны дать работающим мышцам огромное количество энергии, но в течение весьма непродолжительного времени, потому что запас этих соединений в организме ограничен (запасов КФ в мышцах всего в 3-4 раза больше, чем АТФ). Именно эти химические реакции оказывают максимальный вклад в обеспечение энергией быстрого, взрывного плавания с полной отдачей примерно в первые 10 секунд спринтерской дистанции в 50 метров.

Итак, запаса КФ и АТФ хватает лишь на 7-12 секунд предельно интенсивной работы, ну, или же на 15-30 секунд просто интенсивного сокращения мышц. В течение этого времени организмом не накапливается молочная кислота, поэтому такое энергообразование называется анаэробным алактатным. Но, нам необходимо двигаться дальше, и организм для получения энергии переключается на менее эффективный энергоноситель — гликоген, запасы которого в организме гораздо более значительны, нежели запасы креатинфосфата.

Анаэробное лактатное энергообразование

Анаэробное лактатное (гликолитическое) энергообразованиегликолиза

На самом деле анаэробное расщепление гликогена «стартует» практически с самого начала физической нагрузки, так как организм, не зная какая работа его ждет, старается активировать все свои энергетические системы, чтобы потом не допустить перерывов в работе. Когда заканчиваются запасы КФ и АТФ в мышцах, то есть секунд через 15-20, анаэробная лактатная система выходит на максимальную интенсивность.

Казалось бы, запасы гликогена в мышцах достаточно велики, и анаэробное лактатное энергообеспечение может очень долго снабжать мышцы энергией. Но по факту действия этой системы длится 2-3 минуты очень интенсивной работы. В чем же подвох? Все дело в той самой, образующейся при гликолизе, молочной кислоте (лактате). При продолжительных интенсивных нагрузках количество образовавшейся молочной кислоты превышает порог ее возможного усвоения и утилизации другими мышцами и буферными системами крови, что, в конечном счете, приводит к уменьшению синтеза АТФ и снижению работоспособности. В такой ситуации выхода два: либо передохнуть (до тех пор, пока из мышц не выйдут излишки лактата), либо еще больше снизить интенсивность нагрузки, чтобы запустить аэробную систему энергообразования.

Фосфатная система

Фосфатный механизм ресинтеза АТФ включает использование имеющихся запасов АТФ в мышцах и быстрый ее ресинтез за счет высокоэнергетического вещества креатинфосфата (КрФ), запасы которого в мышцах ограничиваются 6-8 с интенсивной работы. Реакция ресинтеза АТФ с участием КрФ выглядит следующим образом:

КрФ + АДФ → АТФ + креатин

Фосфатная система отличается очень быстрым ресинтезом АТФ из АДФ, однако она эффективна только в течение очень короткого времени. При максимальной нагрузке фосфатная система истощается в течение 10 с. Вначале в течение 2 с расходуется АТФ, а затем в течение 6-8 с — КрФ. Такая последовательность наблюдается при любой интенсивной физической деятельности. Фосфатная система важна для спринтеров, футболистов, прыгунов в высоту и длину, метателей диска, боксеров и теннисистов, то есть для всех взрывных, кратковременных, стремительных и энергичных видов физической деятельности.

Скорость ресинтеза КрФ после прекращения физической нагрузки также очень высока. Запасы высокоэнергетических фосфатов (АТФ и КрФ), израсходованных во время нагрузки, восполняются в течение нескольких минут после ее завершения. Уже через 30 с запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 мин восстанавливаются полностью.

Для тренировки фосфатной системы используются резкие, непродолжительные, мощные упражнения, чередующиеся с отрезками отдыха. Отрезки отдыха должны быть достаточно длительными, чтобы успевал происходить ресинтез АТФ и КрФ (график 1).

Анаэробная система

Глюкоза является единственным источником энергии, который может быть использован в отсутствии кислорода. Глюкоза запасается в мышцах и печени в виде гликогена. Гликоген — это длинная цепочка молекул глюкозы, сцепленных вместе. В анаэробной системе энергообразования глюкоза (из гликогена) распадается до вещества, которое называется пируват (пировиноградная кислота). В отсутствие кислорода пируват превращается в молочную кислоту, образуя две молекулы АТФ.

Анаэробная система обеспечивает быстрое поступление энергии, однако при анаэробной нагрузке начинает накапливаться молочная кислота, которая отрицательно сказывается на работе мышц и приводит к утомлению. Когда кислород снова становится доступен, молочная кислота опять превращается в пируват или непосредственно сжигается мышцами для энергии. Молочная кислота также может быть преобразована печенью в глюкозу.

Анаэробная система обеспечивает организм энергией во время нагрузки максимальной мощности, длящейся до 60 секунд, например во время бега на 100-400 м или при подъеме штанги, а также в первые секунды упражнения. Она также обеспечивает энергией во время ускорений, которые характерны для таких видов спорта, как футбол, баскетбол, хоккей и теннис.

Аэробное энергообразование

Аэробное энергообразованиеокисления

Как и другие системы получения энергии для синтеза АТФ, аэробная система запускается сразу в момент начала физических нагрузок, но наращивает обороты очень медленно, выходя на свою максимальную мощность через 2-3 минуты интенсивной нагрузки. Вначале преобладает распад гликогена, и только потом, минут через 20-30 начинает преобладать распад жирных кислот.

Эффективность аэробных процессов напрямую зависит от поступления кислорода, а его поступление в свою очередь в основном зависит от работы сердечно-сосудистой и дыхательной системы. Чем больше сердце и легкие могут поставить работающим мышцам кислорода, тем больше энергии можно произвести аэробным способом.

Как написано выше, при одинаковом по весу расходе гликогена и жирных кислот, из жиров получается почти в три раза больше энергии. Но для окисления жирных кислот кислорода требуется больше (по некоторым данным на 12%), чем для расщепления гликогена. Получается такая закономерность: чем интенсивнее нагрузка, тем больше требуется кислорода для обеспечения реакций расщепления, и тем больше преобладает расход гликогена по сравнению с расходом жирных кислот (при нарастающем дефиците кислорода, организм просто не может себе позволить расщеплять жирные кислоты). Поэтому организм начинает расщеплять в основном жиры только тогда, когда запасы гликогена подходят к концу. Или… когда кислорода предостаточно, т.е. при малоинтенсивных нагрузках.

Регулярные аэробные тренировки позволяют увеличить число митохондрий в мышцах, в результате чего мышцы способны принимать больше кислорода. Поэтому при одинаковой мощности аэробной работы, более тренированный человек будет использовать больше жиров и меньше углеводов по сравнению с менее подготовленным человеком.

Эффективность аэробного энергообеспечения за счёт жировых запасов зависит также от скорости протекания процесса расщепления жиров на составляющие их жирные кислоты (этот процесс называется липолизом) и от скорости кровотока в жировой ткани. Максимальный кровоток в жировой ткани обеспечивает работа, выполняемая с интенсивностью 60-70 % от максимальной частоты сердечных сокращений.

Мощность, образуемая при аэробном энергообразовании, гораздо меньше мощности, получаемой анаэробным процессом. Но с помощью аэробных источников энергии можно проплыть или пробежать намного дольше: ведь резервы жиров в организме весьма велики. Аэробные пути энергообеспечения являются превалирующими на дистанциях в 400, 800, 1500 метров и в марафонском плавании на открытой воде, а также вносят некоторый вклад в плавание на 100 и 200 метров.

Следует помнить, что при продолжительных аэробных нагрузках свыше 90 минут, собственных запасов гликогена организму для продолжения работы часто не хватает. Поэтому эти резервы нужно восполнять напитками с богатым содержанием глюкозы и минеральных веществ.

Подведем итоги:

Система энерго-образования Подвид системы энерго-образования Источники энергии Скорость образования АТФ Объем производства АТФ Когда используется Дистанции в плавании
Анаэробная Анаэробная алактатная  Креатинфосфат, АТФ Очень высокая Малый, так как ограничен малым количеством АТФ и креатинфосфата в мышцах При очень интенсивной кратковременной работе продолжительностью до 7-12 секунд Быстрое плавания с полной отдачей в первые 10 секунд спринтерской дистанции в 50 метров
Анаэробная лактатная  Гликоген мышц и печени, глюкоза крови Высокая Ограниченный, так как накопления лактата в мышцах приводит к утомлению При нагрузке высокой интенсивности и малой продолжительности (1-3 минуты) Главные источники в плавании на 100 и 200 метров, а также вносят заметный вклад в энергообеспечение на дистанции в 400 метров.
Аэробная Аэробный гликолиз Гликоген мышц и печени, глюкоза крови Медленная Ограничивается запасами гликогена.  При аэробных нагрузках средней интенсивности продолжительностью более 3 минут Главные источники на дистанциях в 400, 800, 1500 метров и в марафонском плавании на открытой воде, также вносят некоторый вклад в плавание на 100 и 200 метров
Аэробное окисление жирных кислот Жирные кислоты Медленная Неограниченный. Но сжигание жира требует большего количества кислорода по сравнению с окислением углеводов. При аэробных нагрузках низкой и средней интенсивности продолжительностью более 20 минут

Строение мышц и типы мышечных волоконКаталог статей раздела ТРЕНИРОВКА

3.1. Механизмы энергообеспечения организма человека при мышечной работе

Любая мышечная
деятельность сопряжена с использованием
энергии, непосредственным источником
которой является АТФ
(аденозинтрифосфорная
кислота
).
АТФ называют универсальным источником
энергии. Все остальные энергопроцессы
направлены на воспроизводство и
поддержание её уровня.

АТФ во время
мышечной работы восстанавливается с
такой же скоростью, как и расщепляется.
Восстановление АТФ может осуществляться
двумя путями – анаэробным
(в ходе реакции без кислорода) и аэробным
(с различным уровнем потребления
кислорода) с участием специального
энергетического вещества креатинфосфата.
Готового для
ресинтеза АТФ креатинфосфата хватает
только на 10-15 секунд мощной работы.

В таких условиях ресинтез АТФ идёт при
остром дефиците кислорода (например,
вот почему невозможно в спринтерском
темпе пробежать 800 м). Мышечная работа
очень высокой интенсивности осуществляется
в анаэробном режиме, когда ресинтез АТФ
совершается при остром дефиците
кислорода. В этом случае организм
добывает для работы АТФ, используя
процесс гликолиза
– превращения углеводородов, в результате
которого вновь происходит ресинтез
АТФ, и образуются конечные кислые
продукты – молочная (лактат) и
пировиноградная кислоты.

Гликолиз
обеспечивает работоспособность организма
в течение 2-4 минут, т.е. креатинфофатный
механизм и гликолиз дают энергии совсем
немного.

При высокой
функциональной напряжённости в мышцах
уменьшается содержание энергонасыщенных
углеводов (гликогена и фосфорных –
креатинфосфата), в крови снижается
уровень глюкозы, в печени – гликогена.
Если нагрузка продолжительная, то
источник энергии восполняется за счёт
повышения интенсивности освобождения
жирных кислот
из жировой ткани и их окисления в мышцах.

Аэробный механизм
(когда запросы организма в кислороде
полностью удовлетворяются) окисления
питательных веществ с образованием
креатинфосфата и ресинтеза АТФ является
наиболее эффективным
и может обеспечивать работоспособность
человека в течение нескольких часов. В
этих условиях организм добывает энергии
АТФ во много раз больше, чем при гликолизе.

Следует отметить,
что в клетках все превращения углеводов,
жиров, органических кислот и, в последнюю
очередь, белков на пути к ресинтезу АТФ
проходят в митохондриях.
В обычных условиях работает часть
митохондрий, но по мере увеличения
потребности мышц в энергии в процессе
ресинтеза макроэнергетических соединений
включается всё больше «подстанций».

Способность
человека к ресинтезу АТФ, мощность и
ёмкость каждого уровня индивидуальны,
но диапазон всех уровней может быть
расширен за счёт тренировки. Если запросы
возрастают, в клетках увеличивается
количество митохондрий, а при ещё большей
потребности – убыстряется темп их
обновления. Такой процесс повышает
возможность использования кислорода
в окислительных процессах и окисления
жиров в большом количестве.

Важную роль в
поддержании уровня кислорода в мышечных
волокнах (особенно в красных – медленных)
играет белок миоглобин,
который содержит железо и по строению
и функциям близок к гемоглобину.

Пример:

У тюленей массой
70 кг с миоглобином связано 2530 мл кислорода,
что позволяет ему находиться под водой
до 14 минут. У человека с той же массой с
миоглобином связано 335 мл кислорода.

При выполнении
физической нагрузки организму необходимо
обеспечить работающие мышцы достаточным
количеством кислорода для поддержания
высокого уровня окислительных процессов,
поставляющих энергию. Другими словами,
нужно перестроить работу кардиореспираторной
системы на режим увеличения вентиляции
лёгких и возрастания объёмной скорости
кровотока, прежде всего, в работающих
органах (скелетных мышцах, сердце и др.)
для оптимального удовлетворения их
энергетических потребностей. Так, у
тренированных лиц приспособление сердца
к нагрузке происходит в большей степени
за счёт повышения ударного объёма и в
меньшей – за счёт увеличения частоты
сердечных сокращений (ЧСС).

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород   ⇒     АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной  и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород  ⇒    АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ.  Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.  

Больше полезной информации и статей вы можете найти ЗДЕСЬ.

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

  1. Самый маленький бак – КреатинФосфат (это как 98 бензин). Он находится как бы ближе к мышце и запускается в работу быстро. Этого «бензина» хватает на 9 сек. работы.
  2. Средний бак – Гликоген (92 бензин). Этот бак находится чуть дальше в организме и топливо из него поступает с 15-30 секунды физической работы. Этого топлива хватает на 1-1,5 часа работы.
  3. Большой бак – Жир (дизельное топливо). Этот бак находится далеко и прежде, чем топливо начнет поступать из него пройдет 3-6 минут.  Запаса жира в организме человека на 10-12 часов интенсивной, аэробной работы.

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

Системы энергообеспечения физической нагрузки

Большинство людей или, по крайней мере, многие могут объяснить, как мотор в их автомашине приходит в действие. Они знают, что для того чтобы сжигать топливо, мотору необходим кислород. Они знают, что по мере того как скорость машины растет, двигателю требуется больше топлива и больше кислорода. Они также знают, что если они не обеспечат машину топливом и кислородом, то она просто не поедет.

Подобным же образом в организм человека должна постоянно поступать энергия для выполнения множества сложных задач. Во время физической нагрузки вашему организму требуется больше энергии. Необходимо любым способом предоставить эту дополнительную энергию, иначе вы непременно остановитесь. Существует две взаимосвязанных системы энергообеспечения организма: одна из них функционирует в присутствии кислорода, другая — без кислорода. Это, соответственно, аэробная и анаэробная системы.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий

Свежие записи